25,895 research outputs found

    K-Adaptability in Two-Stage Distributionally Robust Binary Programming

    Get PDF
    We propose to approximate two-stage distributionally robust programs with binary recourse decisions by their associated K-adaptability problems, which pre-select K candidate secondstage policies here-and-now and implement the best of these policies once the uncertain parameters have been observed. We analyze the approximation quality and the computational complexity of the K-adaptability problem, and we derive explicit mixed-integer linear programming reformulations. We also provide efficient procedures for bounding the probabilities with which each of the K second-stage policies is selected

    Understanding the truth about subjectivity

    Get PDF
    Results of two experiments show children’s understanding of diversity in personal preference is incomplete. Despite acknowledging diversity, in Experiment 1(N=108), 6- and 8-year-old children were less likely than adults to see preference as a legitimate basis for personal tastes and more likely to say a single truth could be found about a matter of taste. In Experiment 2 (N=96), 7- and 9-year-olds were less likely than 11- and 13-yearolds to say a dispute about a matter of preference might not be resolved. These data suggest that acceptance of the possibility of diversity does not indicate an adult-like understanding of subjectivity. An understanding of the relative emphasis placed on objective and subjective factors in different contexts continues to develop into adolescence

    On Derandomizing Local Distributed Algorithms

    Full text link
    The gap between the known randomized and deterministic local distributed algorithms underlies arguably the most fundamental and central open question in distributed graph algorithms. In this paper, we develop a generic and clean recipe for derandomizing LOCAL algorithms. We also exhibit how this simple recipe leads to significant improvements on a number of problem. Two main results are: - An improved distributed hypergraph maximal matching algorithm, improving on Fischer, Ghaffari, and Kuhn [FOCS'17], and giving improved algorithms for edge-coloring, maximum matching approximation, and low out-degree edge orientation. The first gives an improved algorithm for Open Problem 11.4 of the book of Barenboim and Elkin, and the last gives the first positive resolution of their Open Problem 11.10. - An improved distributed algorithm for the Lov\'{a}sz Local Lemma, which gets closer to a conjecture of Chang and Pettie [FOCS'17], and moreover leads to improved distributed algorithms for problems such as defective coloring and kk-SAT.Comment: 37 page

    Efficiency of the Wang-Landau algorithm: a simple test case

    Full text link
    We analyze the efficiency of the Wang-Landau algorithm to sample a multimodal distribution on a prototypical simple test case. We show that the exit time from a metastable state is much smaller for the Wang Landau dynamics than for the original standard Metropolis-Hastings algorithm, in some asymptotic regime. Our results are confirmed by numerical experiments on a more realistic test case

    Optimum pulse shapes for stimulated Raman adiabatic passage

    Full text link
    Stimulated Raman adiabatic passage (STIRAP), driven with pulses of optimum shape and delay has the potential of reaching fidelities high enough to make it suitable for fault-tolerant quantum information processing. The optimum pulse shapes are obtained upon reduction of STIRAP to effective two-state systems. We use the Dykhne-Davis-Pechukas (DDP) method to minimize nonadiabatic transitions and to maximize the fidelity of STIRAP. This results in a particular relation between the pulse shapes of the two fields driving the Raman process. The DDP-optimized version of STIRAP maintains its robustness against variations in the pulse intensities and durations, the single-photon detuning and possible losses from the intermediate state.Comment: 8 pages, 6 figures. submitted to Phys. Rev.

    Analysis of wake vortex flight test data behind a T-33 aircraft

    Get PDF
    Measurements of the vortex system behind a T-33 aircraft were obtained by a Learjet equipped with a boom carrying a three-wire, hot-wire anemometry probe and other instrumentation. Analysis of the measurements using a computerized geometric method indicated the vortices had a core radius of approximately 0.11 meter with a maximum velocity of 25 meters per second. The hot-wire anemometer was found to be a practical and sensitive instrument for determining in-flight vortex velocities. No longitudinal instabilities, buoyant effects or vortex breakdowns were evident in the data which included vortex wake cross sections from 0.24 to 5.22 kilometers behind the T-33

    Vacuum-Stimulated Raman Scattering based on Adiabatic Passage in a High-Finesse Optical Cavity

    Full text link
    We report on the first observation of stimulated Raman scattering from a Lambda-type three-level atom, where the stimulation is realized by the vacuum field of a high-finesse optical cavity. The scheme produces one intracavity photon by means of an adiabatic passage technique based on a counter-intuitive interaction sequence between pump laser and cavity field. This photon leaves the cavity through the less-reflecting mirror. The emission rate shows a characteristic dependence on the cavity and pump detuning, and the observed spectra have a sub-natural linewidth. The results are in excellent agreement with numerical simulations.Comment: 4 pages, 5 figure

    Radiative return at NLO and the measurement of the hadronic cross-section in electron-positron annihilation

    Get PDF
    Electron-positron annihilation into hadrons plus an energetic photon from initial state radiation allows the hadronic cross-section to be measured over a wide range of energies. The full next-to-leading order QED corrections for the cross-section for e^+ e^- annihilation into a real tagged photon and a virtual photon converting into hadrons are calculated where the tagged photon is radiated off the initial electron or positron. This includes virtual and soft photon corrections to the process e^+ e^- \to \gamma +\gamma^* and the emission of two real hard photons: e^+ e^- \to \gamma + \gamma + \gamma^*. A Monte Carlo generator has been constructed, which incorporates these corrections and simulates the production of two charged pions or muons plus one or two photons. Predictions are presented for centre-of-mass energies between 1 and 10 GeV, corresponding to the energies of DAPHNE, CLEO-C and B-meson factories.Comment: 13 pages, 15 figure
    corecore